A fuzzy logic application to analyze lack of financial control in consumer behavior
Abstract
This article research aims to report the progress on the investigation of the factors, under the dimensions of social, psychological, and economical, that collaborate on lack of financial control motive attached to individual control. The research applied fuzzy logic to collect data, process, and translate in fuzzy number graphics the level of selected variables in terms of agreement/ disagreement from two self-declared research groups. As a result, some of the variables present more similarities between opinions helping in a better understanding of the motive of the lack of financial control.
About the Authors
Fabio Luiz Peres KrykhtineBrazil
Fabio Luiz Peres Krykhtine – PhD in Production Engineering, Professor of the Industrial Engineering Department at the Polytechnic School, Coordinator of International Affairs
22290-240, Rio de Janeiro, Avenida Pedro Calmon, 550
Sheila de Barcellos Maia
Brazil
Sheila de Barcellos Maia – PhD in Production Engineering, Professor
04018-010, Brazil, Rio de Janeiro, Ladeira da Glória, 26
Carlos Alberto Nunes Cosenza
Brazil
Carlos Alberto Nunes Cosenza – Production Engineering, Professor, Head of the Fuzzy Logic Laboratory
22290-240, Rio de Janeiro, Avenida Pedro Calmon, 550
Armando Celestino Gonç Neto
Brazil
Armando Celestino Gonçalves Neto – Production Engineering, Professor of the Industrial Engineering Department at the Polytechnic School
22290-240, Rio de Janeiro, Avenida Pedro Calmon, 550
References
1. Kahneman, D. Rapido e Devagar: Duas Formas de Pensar. Rio de Janeiro: Objetiva. 2012. pp. 13-15.
2. Belk, R. W. Materialism: Trait Aspects of Living in The Material World. Journal of Consumer Research, Chicago. 1985. Vol. 12. №3. pp. 265-280.
3. Ariely, D. A Mais Pura Verdade Sobre Desonestidade: Por ue Mentimos Para Todo Mundo: Inclusive Para Nos Mesmos. Rio de Janeiro: Elsevier. 2012. pp. 74-85.
4. Correia, J. et al. A Psicologia Economica na Analise do Comportamento do Consumidor. Revista Brasileira de Marketing. 2017. Vol. 16. №2. pp. 121-134.
5. Thaler, R. H. Sunstein, C. R. Nudge: Como Tomar Melhores Decisoes Sobre Sau´de, Dinheiro e Felicidade. Rio de Janeiro: Objetiva. 2019. pp. 176-188.
6. Ariely, D., Kreisler, J. A Psicologia do Dinheiro. Rio de Janeiro: Sextante. 2019. pp. 34-55.
7. Burroughs, J. E. et al. Using Motivation Theory to Develop a Transformative Consumer Research Agenda for Reducing Materialism in Society. Journal of Public Policy Marketin. 2013. Vol. 32. №1. pp. 18-31.
8. Ariely, D. Previsivelmente Irracional. Rio de Janeiro: Elsevier. 2008. pp. 37-46.
9. Coskun, Y. et al. Multi-Horizon Financial and Housing Wealth Effects Across the U.S. States. Sustainability, Basel, Switzerland. 2021. Vol. 13. №1. p. 202- 208.
10. Syropoulos, A., Papadopoulos, B. K. Vagueness in The Exact Sciences: Impacts in Mathematics, Physics, Chemistry, Biology, Medicine, Engineering and Computing, Berlin, Boston: De Gruyter. 2021, available at: https://doi.org/10.1515/9783110704303 (Accessed 23 October 2023).
11. Zadeh, L. A. Fuzzy sets. Information and Control, Amsterdam. 1965. Vol. 8. №3. pp. 338-353.
12. Russel, B. Vagueness. Australasian Journal of Philosophy. 1923. Vol. 1 №2. pp. 84-92.
13. Black, M. Vagueness. An Exercise in Logical Analysis. Philosophy of Science. 1937. Vol. 4. №4. pp. 427-455.
14. Krykhtine, F., Cosenza, C., Doria, F. A Fuzzy Algorithm For Understanding the Customer’s Desire. An Application Designed For Textile Industry. Independent Journal of Management Production. 2013. Vol. 4. №10. pp. 24-41.
15. Mora-Camino, F., Cosenza, C. Fuzzy Dual Numbers. In: Fuzzy Dual Numbers. Studies in Fuzziness and Soft Computing. 2018. Vol. 359. Springer, Cham, available at: https://doi.org/10.1007/978-3-319-65418-8 (Accessed 7 November 2023).
16. Bass, S. Kwakernaak, H. Rating and Raking of Multiple-Aspect Alternatives Using Fuzzy-Sets. Automatica. 1977. Vol. 13. pp. 47-58.
17. Narasimhan, R. A Fuzzy Subset Characterization of a Site Selection Problem. Decision Sciences. 1979. Vol. 10. №4. pp. 618-628.
18. Ross, T. J. Fuzzy Logic With Engineering Applications. 3. ed. New Jersey: John Wiley Sons. 2010. pp. 86-114.
Review
For citations:
Krykhtine F., Maia Sh., Cosenza C., Neto A. A fuzzy logic application to analyze lack of financial control in consumer behavior. International Business. 2023;(3 (5)):38-55.